

DEPARTMENT OF PRODUCTION TECHNOLOGY

MIT CAMPUS - CHROMEPET

ANNA UNIVERSITY :: CHENNAI - 600 044.

COURSE PLAN

COURSE DETAILS:

Degree	B.E.						
Programme Name	Robotics and A	Robotics and Automation Engineering					
Course Code & Title	RO 5403 : Mate	RO 5403 : Materials for Robots					
Credits	3	Session	February – June 2024				
Course Type	PCC	Section	MIT - Campus				
Name of the Faculty	Dr.G.Kumares Assistant Profe Department of MIT Campus, A		- 600044.				

COURSE CONTENT:

RO5403

MATERIALS FOR ROBOTS

L T P C 3 0 0 3

COURSEOBJECTIVES:

- 1. Toimpartknowledgeonthevariousstructuralfeaturesofmetallic materials.
- 2. Todesirethevariousferrousandnonferrousalloysandtheirapplications.
- ${\it 3.} \quad {\it Toillustrate the role of heat treatment and surface modification of materials}.$
- 4. Toreviewnonmetallicmaterialsandcompositeswiththeirapplications
- 5. Toenablestudenttoselectmaterialforapplicationsincludingthemodernmaterials.

UNIT-I ALLOYS AND PHASE DIAGRAM

6

Atomic structure and inter atomic bonding the structure of crystalline and non-crystalline materials. Constitution of alloys- Solid solution, substitutional and interstitial- phase diagrams, Isomorphous, eutectic, eutectoid, peritectic and peritectoid reactions, iron –carbon equilibrium diagram.

UNIT-II FERROUS AND NON FERROUS METALS

9

Classificationsofthesteels—effectofalloyingadditionofsteel-stainlessandtoolsteel-HSLA. Castiron-Gray, White, Malleableand Spheroidal—alloycastiron, Copperand Copperalloys, Brass, Bronzeand Cupronickel—Aluminium alloys and Al-Cu-precipitation strengthening treatment—Alloys of Aluminium, Titanium and Magnesium.

UNIT-III HEAT TREATMENT AND SURFACE MODIFICATION

7

Isothermal transformation diagrams—cooling curves superimposed on I.T. diagram CCR – Types and stages of annealing, stress relief, recrystallization and spheroidizing—normalizing, hardening and tempering of steel—Introduction to case hardening, Thermal spraying, CVD, PVD and nonmetallic coatings.

UNIT-IV NON METALLIC MATERIALS AND COMPOSITES

11

Polymers-Thermo, Thermoset Polymers, PE, PS, PVSPMMA, PC, PET, ABS-Engineering Polymers, PA, PPS, PI, PFE- Natural and Synthetic rubbers, Elastomers - Adhesives—Ceramics - Natural and Synthetic Ceramic - Composites — classification - structural composites and applications of composites

UNIT-V

FUNCTIONAL MATERIALS

9

Introduction to smart materials, principles of piezoelectricity, piezoelectric polymers. Magnetostrictive materials - Magneto resistance effect, Introduction to Electro active polymers, Ionic polymer matrix composite. Shape memory alloys-Bulk Metallic glasses and nano Crystalline materials.

TOTAL:45PERIODS

COURSEOUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Identify the various structural features of metallic materials.

 ${\tt CO2:} Recognize the various ferrous and nonferrous alloys with their applications. ~{\tt CO3:}$

Relate the heat treatment, Coating, microstructure and properties.

 ${\tt CO4:} Explain the various nonmetal lic materials and composites with their applications. \ {\tt CO5:}$

Suggest suitable materials for a given application.

00 (00-		IVI	app	ingc	100		POs		uiiu	PSOs	_		P	SOs	
COs/POs &PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	a Septifi	SERVE III						1			6.3
CO2	3	2	1	1		1				PAL.		1			3
CO3	3	2	1	1			kaga	J.				1			3
CO4	3	2	1	1	1	1 6	1	THE ST		4		1			3
CO5	3	2	1	1	14	1	1	Kr.	en			1			(
CO/PO&PS O Average			a seed	A PERSON	aun W	Britis.	No. of the last of			bstan					

TEXTBOOKS:

- $\label{lem:decomposition} David GRethwisch, \textbf{Callister's 'Materials Science and Engineering'}, \textbf{Wiley India Pvt}.$
- 2. KennethG.BudinskiandMichaelK.Budinski,"EngineeringMaterials",9thIndian Reprint, Prentice-Hall of India Private Limited, 2016.

REFERENCES:

- 1. Callisers'sJr.W.D,Rethuish,D.G,MaterialsScienceandEngineering,9thEdition, Wiley, 2014.
- 2. Donald R. Askeland, Pradeep P.Fulay and WendelinJ.Wright, "The Science and Engineering of Materials", 7 th Edition, Cengage Learning, Inc. 2017.
- 3. SidneyH.Avner, "IntroductiontoPhysicalMetallurgy", McGrawHillBookCompany, 2017.
- 4. Ashby M.F., Material Selection in Mechanical Design, 5th Edition, Butter Worth 2017.

COURSE ALIGNED PROGRAMME OUTCOMES (PO) & PROGRAMME SPECIFIC OUTCOMES (PSO)

РО	Graduate Attribute	Programme Outcome
1	Engineering knowledge	Apply knowledge of mathematics, basic science and engineering science.
2	Problem analysis	Identify formulate and solve engineering problems.
3	Design/development of solutions	Design a system or process to improve its performance satisfying its constraints.
4	Conduct investigations of complex problems	Conduct experiments & collect, analyze and interpret
5	Modern tool usage	Apply various tools and techniques to improve the

		efficiency of the system.
6	The Engineer and society	Conduct selves to uphold the professional and social obligations.
7	Environment and sustainability	Design the system with environment consciousness and sustainable development.
8	Ethics	Interacting industry, business and society in a professional and ethical manner.
9	Individual and team work	Function in a multidisciplinary team.
10	Communication	Proficiency in oral and written Communication.
11	Project management and finance	Implement cost effective and improved system.
12	Life-long learning	Continue professional development and learning as a life-long activity.

PSO	Graduates demonstrate
	Apply the knowledge gained in Mechanical Engineering for design and development and manufacture of engineering systems.
2	Apply the knowledge acquired to investigate research oriented problems in mechanical engineering with due consideration for environmental and social impacts.
3	Use the engineering analysis and data management tools for effective management of multidisciplinary projects.

COURSE TENTATIVE SCHEDULE / PLAN

S.No	Date	Hrs	Unit	Topics	Text / Ref
1	7-2-24	4	1	Atomic structure and bonding	T1
2	8-2-24	1,2	1	Alloys and defects	T1
3	14-2-24	4	1	Introduction to Phase diagrams	T1
4	15-2-24	1,2	1	Nil solid solubility phase diagram	T1
5	21-2-14	4	1	Partially solid solubility phase diagram	T1
6	22-2-14	1,2	1	Iron – carbon phase diagram	T1
7	28-2-24	4	2	Classification of steels	T1
8	29-2-24	1,2	2	Classification of cast iron	T1
9	6-3-24	4	2	Copper alloys	T1
10	7-3-24	1,2	2	Aluminium alloys	T1
11	13-3-24	4	2	Titanium alloys	T1
1	14-3-24	1,2	2	Strengthening mechanism	T1
2	20-3-24	4	3	TTT diagram	T1
13	21-3-24	1,2	3	Heat treatment	T1
14	27-3-24	4	3	Hardening and tem[pering	T1
15	28-3-24	1,2	3	PVD and CVD	T1
16	3-4-24	4	4	Introduction to polymers	T2
17	4-4-24	1,2	4	PE , PS, PVS, PMMA	T2
18	10-4-24	4	4	PET, ABS, PA	T2
10170	11-4-24	1,2	4	PPS, PI,PTFE	T2
19		4	4	Rubbers	T2
20	17-4-24 18-4-24	1,2	4	Ceramics	T2
21	24-4-24	4	4	Composites	T2
22		1,2	5	Smart materials	R2
23	25-4-24 2-5-24	1,2	5	Shape memory alloys	R2
24	8-5-24	4	5	Bulk metallic glasses	R2
25 26	9-5-24	1,2	5	Nano materials	R2

COURSE DELIVERY/INSTRUCTIONAL METHODOLOGIES:

		CIAL PROPERTY
✓ Chalk & Talk	✓ Stud. Assignments	✓ Web Resources

✓ LC	D/Smart boards	✓ Stud	d. Semina	d. Seminars		□ Add-O	☐ Add-On Courses	
COU	RSE ASSESSM	ENT METHODOLO	GIES-DIF	RECT				
√ Un	iversity (End Se	mester) Examinatio	n	✓ In	ernal /	Assessment	Tests	
√ As	signments	□ Laboratory I	Practices	□м	ini/Maj	or Projects	✓ Stud. Seminars	
□ Viva Voce		☐ Certification	s	□ A	dd-On	Courses	□ Others	
coul	RSE ASSESSM	ENT METHODS						
S.N.	Mode of Asse	ssment	D	Date		Duration	% Weight	
1	Internal Asses	sment Tests 1			1½ hr		25 %	
2		sment Tests 2				1½ hr	25 %	
3.	University Eve	mination			3 hr	50 %		
0.	Additional mar	ks may be given fo	r Assignm	ents /	Group	/ Team Sem	inar Presentation)	
COU	RSE ASSESSM	ENT METHODOLO	GIES-INI	DIREC	T			
V Δec	sessment of CO	(By Feedback, One	ce)		✓ St	udent Feedba	ack On Faculty (Once)	
. 49	3033mont of 00	(=)						
□ As:	sessment of Mir	ni/Major projects by	Ext. Expe	erts				
	DOE (EVEDA) E	COENTIAL DEAD	NGS.	_				
COU	RSE (EXTRA) E	SSENTIAL READ	INGO.					
1	. NPTEL - LIN	K						
,	COURSE EX	IT SURVEY (will be	collected	at en	d of the	e course)		
_	, COUNCE EX						evperionees and their	

The purpose of this survey is to find out from students about their learning experiences and their thoughts about the course.

Rating:	1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
CO1:			
CO2:			
CO3:			
CO4:			
CO5:			

COURSE POLICY (Compensation Assessment)

- 1. Attending all the assessment is mandatory for every student
- 2. Course policy will be followed as per the academic course regulation

COURSE ACADEMIC DISHONESTY AND PLAGIARISM

- All rules and regulation prescribed by the ACOE, University Departments, are applicable in the Internal Assessment Tests and University (End Semester) Examinations. (https://acoe.annauniv.edu/download_forms/student_forms/Guidelines.pdf)
- 2. In general, possessing a mobile phone, carrying bits of paper with materials, talking to other students, copying from other students during Internal Assessment Tests and University (End Semester) Examinations will be treated as Malpractice and punishable as per the rules and regulations. The misuse of Assignment / Project / Seminar works from others is considered as academic dishonesty and will be treated with the rules and regulations of the University.

COURSE ADDITIONAL INFORMATION

Queries / clarifications / discussion (if required) may be e-mailed to / contact the course instructors during their Office Hours.

For Approval			
Course Faculty 6212	Course Coordinator	HOD	

DOCUMENTS TO BE MAINTAINED IN COURSE FILE FOR QUALITY IMPROVEMENT (NBA)

May be followed as per regulation

A.THEORY COURSES

- 1. Syllabus with 5 course objectives and 5 course outcomes (5COs) for all theory subjects with CO- PO-PSO mapping.
- 2. Course plan for the total LTPC
- 3. Question papers to be modified according to blooms taxonomy (latest format may be used), Cos has to be matched according to the mark entry.
- 4. SEMS marks statement
- 5. Internal-1, Internal -2, end semester mark entry sheet dully signed by faculty
- 6. 2 answer sheets/ category copy to be available in course file for the following category students (poor, average and good). A total of 6 sheets to be available.
- 7. End semester answer sheets if possible from DCOE
- 8. Assignment/ quiz answer sheets copy to be available in course file for the following category students (poor, average and good).
- 9. Result analysis of student's performance for the grades. Example: A-10 students, B-20 students etc.